Chapitre 2:

Suites numériques

Tle-Techno

- Moyenne arithmétique et moyenne géométrique.
- expression en fonction de n du terme de rang n.
- Somme des n premiers termes.

I. <u>Moyennes arithmétiques et géométriques</u>

<u>Définition</u>: Soit a et b deux nombres de même signe.

La moyenne arithmétique des 2 nombres a et b est donnée par la formule : $\frac{a+b}{2}$

<u>Exemple</u>: James a eu 2 notes en maths (même coefficient): 5 et 13. Quelle est sa moyenne?

<u>Définition</u>: Soit a et b deux nombres de même signe.

La moyenne géométrique des 2 nombres a et b est donnée par la formule : $\sqrt{a imes b}$

Exemple:

- a) Quelle est la moyenne arithmétique de 1,5 et 0,96
- b) Une station-service a augmenté ses tarifs de 50% le premier mois, puis les a baissés de 4% le second mois. Quelle est le taux mensuel moyen d'évolution des prix ?

II. Suites de nombres

Exemples :

Complète chacune des suites numériques suivantes :

5 8 11

1 4 9 16

7 14 28 56 112 224 ...

57 18 6 ...

16 48 24 72 36 108 54 162 81 ...

<u>Définition</u>: Une suite numérique est un ensemble de valeurs indexées sur les entiers.

		•					
n	0	1	2	3	4	5	6
u_n	u_0	u_1	u_2	и3	<i>и</i> ₄	u_5	u_6

Exemples: $u_0 = 2,4$, $u_1 = 3,6$, $u_2 = 5,4$, $u_3 = 8,1$, ... est une suite numérique que l'on nomme également $(u_n)_{n \in \mathbb{N}}$. Chaque terme est obtenu en multipliant le précédent par 1,5

III. Suites arithmétiques

<u>Définition</u>: Une suite arithmétique est une suite où il faut ajouter toujours le même nombre réel r pour passer d'un terme au terme suivant (r est la raison de la suite).

Pour tout n entier naturel,

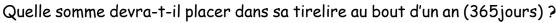
$$u_{n+1} = u_n + r$$

ou encore pour tout entier naturel n,

$$u_n = u_0 + n \times r$$

Exemple:

Joey décide de mettre de l'argent de côté. Le premier jour, il met $1 \in \text{dans}$ sa tirelire. Le $2^{\text{ème}}$ jour, il met $1,10 \in \text{, le } 3^{\text{ème}}$ jour $1,20 \in \text{, et ainsi de suite en ajoutant chaque jour } 0,10 \in \text{à son placement.}$



Soit $(u_n)_{n\in\mathbb{N}}$ la suite qui donne les placements de Joey suivant les jours. Ainsi :

$$u_0 = 1$$
 , $u_1 = 1,1$, $u_2 = 1,2$, $u_3 = 1,3$

$$u_n = 1 + n \times 0, 1$$

Le 365 ème jour, Joey déposera u_{364} dans sa tirelire.

$$u_{364} = 1 + 364 \times 0, 1 = 37, 4$$

Joey mettra ainsi 37,4€ dans sa tirelire le 365ème jour.

<u>Propriété:</u> Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme u_0 et de raison r. La somme des (n+1) premiers termes de cette suite (jusqu'à u_n) vaut :

Pour tout n entier naturel,

$$u_0 + u_1 + u_2 + \dots + u_n = (n+1)\frac{(u_0 + u_n)}{2}$$

Exemple: Calcule la somme mise de côté par Joey au bout d'un an.

On calcule la somme des 365 premiers termes de la suite $(u_n)_{n\in N}$ (de u_0 à u_{364}):

$$u_0 + u_1 + u_2 + \dots + u_{364} = (364 + 1) \frac{(u_0 + u_{364})}{2}$$

$$u_0 + u_1 + u_2 + \dots + u_{364} = 365 \times \frac{(1+37,4)}{2}$$

$$u_0 + u_1 + u_2 + \dots + u_{364} = 365 \times \frac{38,4}{2}$$

$$u_0 + u_1 + u_2 + \dots + u_{364} = 7008$$

Joey aura placé 7008€ au bout d'un an.

<u>Propriétés:</u> Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme u_0 et de raison r.

Si r>0 , alors la suite $\left(u_n\right)_{n\in N}$ est croissante et $\lim_{n\to +\infty}u_n=+\infty$

Si r < 0 , alors la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante et $\lim_{n \to +\infty} u_n = -\infty$

Si r=0 , alors la suite $\left(u_n\right)_{n\in\mathbb{N}}$ est constante et $\lim_{n\to+\infty}u_n=u_0$

IV. Suites géométriques

<u>Définition</u>: Une suite géométrique est une suite où il faut multiplier toujours par le même nombre réel r pour passer d'un terme au terme suivant (r est la raison de la suite).

Pour tout n entier naturel, $u_{n+1} = u_n \times r$

ou encore pour tout entier naturel n, $u_n = u_0 \times r^n$

<u>Exemple</u>: Joey (toujours le même) décide de placer ses 7008€ sur un livret qui rapporte 4% d'intérêts par an.

Quelle somme aura-t-il dans 10 ans?

Quelle somme aurait-t-il dans 100 ans?

Soit $(v_n)_{n\in\mathbb{N}}$ la suite qui donne les placements de Joey suivant les années. Ainsi :

$$v_0 = 7008$$
, $v_1 = 7008 \times 1,04$, $v_2 = 7008 \times 1,04^2$

$$v_n = 7008 \times 1,04^n$$

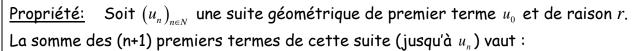
Au bout de 10 ans, Joey aura v_{10} sur son compte en banque.

$$v_{10} = 7008 \times 1,04^{10} \approx 10373,55$$

Joey aura ainsi 10 373,55€ sur son compte au bout de 10 ans.

$$v_{1000} = 7008 \times 1,04^{100} \approx 353\,938,68$$

Joey aurait ainsi 353 938,68€ sur son compte au bout de 100 ans.



Pour tout n entier naturel, si
$$r \neq 1$$
 ,
$$u_0 + u_1 + u_2 + \ldots + u_n = u_0 \times \frac{(1 - r^{n+1})}{\left(1 - r\right)}$$

fractale

<u>Exemple</u>: Chandler souhaite calculer la somme d'argent totale qu'il gagnera durant sa carrière. Il commence avec un salaire annuel de 15 000€ qui est revalorisé de 3% tous les ans. Quelle somme aura-t-il perçue au bout de 42 ans de carrière?

Soit $(u_n)_{n\in\mathbb{N}}$ la suite qui donne le salaire annuel de Chandler :

$$u_0 = 15\ 000$$
, $u_1 = 15\ 000 \times 1,03$, $u_2 = 15\ 000 \times 1,03^2$, ..., $u_{41} = 15\ 000 \times 1,03^{41}$

On calcule la somme des 42 premiers termes de la suite $(u_n)_{n\in N}$ (de u_0 à u_{41}):

$$u_0 + u_1 + u_2 + \dots + u_{41} = u_0 \frac{\left(1 - r^{42}\right)}{\left(1 - r\right)}$$

$$u_0 + u_1 + u_2 + \dots + u_{41} = 15000 \frac{(1 - 1, 03^{42})}{(1 - 1, 03)}$$

$$u_0 + u_1 + u_2 + ... + u_{41} \approx 1$$
 230 347,95

Dans sa carrière, Chandler aura perçu 1 230 347, 95€

<u>Propriétés:</u>

Soit $\left(u_{n}\right)_{n\in\mathbb{N}}$ une suite géométrique de premier terme $u_{0}>0$ et de raison r.

Si r>1 , alors la suite $\left(u_n\right)_{n\in N}$ est croissante et $\lim u_n=+\infty$

Si 0 < r < 1, alors la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante et $\lim_{n \to +\infty} u_n = 0$

Si r=1, alors la suite $(u_n)_{n\in N}$ est constante et $\lim_{n\to +\infty}u_n=u_0$